Title of Planned Instruction: Integrated Mathematics 3

Subject Area: Mathematics

Grade Level: 11-12

Prerequisites: Integrated Math 1 or Algebra 1 with Teacher Recommendation

Course Description:

This course teaches geometric concepts that can be used in the real world. Students will learn these concepts through the use of activities, labs, problem-solving exercises and cooperative learning experiences. Students will have plenty of opportunities to improve reading, writing and math skills during their time spent in this course. This course is designed to help prepare the students for their future in the real world.

Required Time: One year

Course Credit: 1.0

Major Text(s) and Resources:

CORD Geometry: Mathematics in Context, CORD Communications, 2004

Names of District Subject Area Curriculum Writing Committee:

Kimberly A. Bennett
Keith D. Yoder

Date of Board Approval:
Major Topics

- Geometry Basics
- Reasoning and Proof
- Parallel Lines and Triangles
- Congruent Triangles
- Polygons and Quadrilaterals
- Similar Triangles
- Coordinate Geometry
- Area
- Surface Area and Volume

Course Objectives and Performance Indicators

Strand: 2.1
Standard: Numbers, Number Systems and Number Relationships
Course: Integrated Mathematics 3

<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| A | Use operations such as opposite, reciprocal, absolute value, raising to a power, finding roots and logarithms. | • Use segment addition to solve problems.
• Use proportions to solve problems.
• Use mathematical operations. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
Strand: 2.2
Standard: Computation and Estimation
Course: Integrated Math 3

<table>
<thead>
<tr>
<th>Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| A | Develop and use computation concepts, operations and procedures with real numbers in problem-solving situations. | • Develop and use computation concepts, operations and procedures with real numbers in problem-solving situations. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| B | Use estimation to solve problems for which an exact answer is not needed. | • Use estimation to solve problems for which an exact answer is not needed. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| C | Construct and apply mathematical models. | • Construct and apply mathematical models. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Demonstrate skills for using scientific and graphing calculators.</td>
<td>• Correctly use scientific or graphing calculators when given the opportunity.</td>
<td>• Observation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Evaluate written work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Performance assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tests, quizzes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Problem solving journal/activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Evaluate oral response</td>
</tr>
</tbody>
</table>

Strand: 2.3
Standard: Measurement and Estimation
Course: Integrated Mathematics 3

<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Select and use appropriate units and tools to measure to the degree of accuracy required in particular measurement situations.</td>
<td>• Solve problems involving metric measurements, using decimals and scientific notation.</td>
<td>• Observation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Find the length of a line segment using a ruler.</td>
<td>• Evaluate written work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Find the distance between two points using a number line.</td>
<td>• Performance assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Find the midpoint of a line segment.</td>
<td>• Tests, quizzes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Problem solving journal/activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Evaluate oral response</td>
</tr>
<tr>
<td>PA Standards</td>
<td>Course Objectives</td>
<td>Performance Indicators</td>
<td>Assessment Options</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| B | Measure and compare angles in degrees and radians. | • Find the measure of an angle using a protractor.
• Classify angles as acute, right, obtuse, or straight angles.
• Conjecture that vertical angles have equal measures. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| C | Determine relationships between linear, square, and cubic measures and describe how changes in one of the measures of the figure affect the others. | • Use proportions to find actual dimensions of scale drawings and scale dimensions of actual items.
• Use formulas to find the volume and surface area of three-dimensional figures.
• Draw the top, side, and front orthographic projections of a three-dimensional object. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| D | Demonstrate the ability to produce measures with specified levels of precision. | • Measure specific items using various tools. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
Strand: 2.4
Standard: Mathematical Reasoning and Connections
Course: Integrated Mathematics 3

<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| A | Use Direct proofs, indirect proofs, or proof by contradiction to validate conjectures. | • Use inductive reasoning to make conjectures.
• Use deductive reasoning to draw conclusions.
• Identify the hypothesis and the conclusion of a conditional.
• Write statements as conditionals.
• Write the converse, inverse, and contrapositive of a conditional.
• Translate an argument into symbolic form. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| B | Construct valid arguments from stated facts. | • Find unknown terms in a pattern by making a conjecture.
• Use the Law of Syllogism to write proofs.
• Write flowchart, two column, and paragraph proofs.
• Use properties of equality to prove algebraic statements.
• Prove the Overlapping Segments Theorem and use it as well as properties of equality and definitions to prove geometric statements.
• Prove the Supplementary and Complementary Angles Theorem and use them to solve problems.
• Prove the Overlapping Angles Theorem.
• Write indirect proofs.
• Develop a plan and write two-column, paragraph, and flowchart proofs. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Determine the validity of an argument.</td>
<td>Use counter examples to prove that a conjecture is false. Use Venn diagrams to determine if an argument is valid. Determine if a syllogism is a valid argument. If so, identify the rule of logic that makes the argument valid.</td>
<td>Observation Evaluate written work Performance assessments Tests, quizzes Problem solving journal/activity Evaluate oral response</td>
</tr>
<tr>
<td>D</td>
<td>Use truth tables to reveal the logic of mathematical statements.</td>
<td>Use truth tables to reveal the logic of mathematical statements.</td>
<td>Observation Evaluate written work Performance assessments Tests, quizzes Problem solving journal/activity Evaluate oral response</td>
</tr>
<tr>
<td>E</td>
<td>Demonstrate mathematical solutions to problems.</td>
<td>Use algebraic and mathematical techniques to solve problems involving real-life situations. Use Venn diagrams as a problem solving tool.</td>
<td>Observation Evaluate written work Performance assessments Tests, quizzes Problem solving journal/activity Evaluate oral response</td>
</tr>
</tbody>
</table>
PA Standards

A	Select and use appropriate mathematical concepts and techniques from different areas of mathematics and apply them to solving non-routine and multi-step problems.
B	Use symbols, mathematical terminology, standard notation, mathematical rules, graphing and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas and results.
C	Present mathematical procedures and results clearly, systematically, succinctly and correctly.

Performance Indicators

- Solve real-life problems by using appropriate mathematical concepts and techniques.
- Communicate all of the mathematical procedures, concepts, conclusions, etc. necessary to the solution of a problem situation using appropriate mathematical representations.
- Show all steps in the process of solving various types of equations and inequalities.
- Clearly label all results with correct units.

Assessment Options

- Observation
- Evaluate written work
- Performance assessments
- Tests, quizzes
- Problem solving journal/activity
- Evaluate oral response
<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| D | Conclude a solution process with a summary of results and evaluate the degree to which the results obtained represent an acceptable response to the initial problem and why the reasoning is valid. | • Explain how a problem was solved and why the chosen procedures were used. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| D | Use experimental and theoretical probability distributions to make judgments about the likelihood of various outcomes in uncertain situations. | • Use geometric figures to help find probability. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
Strand: 2.8
Standard: Algebra and Functions
Course: Integrated Mathematics 3

<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| A | Analyze a given set of data for the existence of a pattern and represent the pattern algebraically and graphically. | • Find unknown terms in a pattern by making a conjecture. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| B | Give examples of patterns that occur in data from other disciplines. | • Give examples of patterns that occur in data from other disciplines. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Use patterns, sequences and series to solve routine and non-routine problems.</td>
<td>• Use the Fundamental Counting Principal to solve problems.</td>
<td>• Observation
 • Evaluate written work
 • Performance assessments
 • Tests, quizzes
 • Problem solving journal/activity
 • Evaluate oral response</td>
</tr>
<tr>
<td>D</td>
<td>Formulate expressions, equations, inequalities and matrices to model routine and non-routine problem situations.</td>
<td>• Translate between word phrases and algebraic expressions.</td>
<td>• Observation
 • Evaluate written work
 • Performance assessments
 • Tests, quizzes
 • Problem solving journal/activity
 • Evaluate oral response</td>
</tr>
<tr>
<td>E</td>
<td>Use equations to represent curves such as lines.</td>
<td>• Write equations of parallel and perpendicular lines.</td>
<td>• Observation
 • Evaluate written work
 • Performance assessments
 • Tests, quizzes
 • Problem solving journal/activity
 • Evaluate oral response</td>
</tr>
<tr>
<td>PA Standards</td>
<td>Course Objectives</td>
<td>Performance Indicators</td>
<td>Assessment Options</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>J</td>
<td>Demonstrate the connections between algebraic equations and inequalities and the geometry of relations in the coordinate plane.</td>
<td>• Identify properties of inequality.</td>
<td>• Observation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Evaluate written work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Performance assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tests, quizzes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Problem solving journal/activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Evaluate oral response</td>
</tr>
<tr>
<td>K</td>
<td>Select, justify and apply an appropriate technique to graph a linear function in two variables, including slope-intercept, x- and y-intercepts, graphing by transformations, and the use of a graphing calculator.</td>
<td>• Select, justify and apply an appropriate technique to graph a linear function in two variables, including slope-intercept, x- and y-intercepts, graphing by transformations, and the use of a graphing calculator.</td>
<td>• Observation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Evaluate written work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Performance assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tests, quizzes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Problem solving journal/activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Evaluate oral response</td>
</tr>
<tr>
<td>L</td>
<td>Write the equation of a line when given the graph of the line, two points on the line, or the slope of the line and a point on the line.</td>
<td>• Write the equation of a line given its slope and a point on the line.</td>
<td>• Observation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Evaluate written work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Performance assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tests, quizzes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Problem solving journal/activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Evaluate oral response</td>
</tr>
<tr>
<td>PA Standards</td>
<td>Course Objectives</td>
<td>Performance Indicators</td>
<td>Assessment Options</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| M | Given a set of data points, write an equation for a line of best fit. | • Given a set of data points, write an equation for a line of best fit. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| N | Solve linear, quadratic, and exponential equations both symbolically and graphically. | • Solve linear, quadratic, and exponential equations both symbolically and graphically. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| Q | Represent functional relationships in tables, charts and graphs. | • Represent functional relationships in tables, charts and graphs. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
Strand: 2.9
Standard: Geometry
Course: Integrated Mathematics 3

<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| R | Create and interpret functional models. | • Create and interpret functional models.
• Evaluate functions. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |

<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| A | Construct, draw, identify, or investigate geometric figures using appropriate tools, relationships or dynamic geometry tools (Geometer’s Sketchpad). | • Draw, name, and describe characteristics of points, lines and planes.
• Define, draw and name line segments and rays.
• Define and name angles.
• Identify parallel, intersecting, and skew lines.
• Identify perpendicular and parallel lines.
• Analyze slopes of lines to decide if lines are parallel.
• Find the point where two lines intersect, and use points of intersection to solve problems.
• Classify angle pairs formed by the intersection of parallel lines and a transversal. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| A continued | Construct, draw, identify, or investigate geometric figures using appropriate tools, relationships or dynamic geometry tools (Geometer’s Sketchpad). | • Use the relationships of angles formed by the intersection of parallel lines and a transversal to find missing angle measures and to solve problems.
• Construct parallel lines by constructing congruent and corresponding angles.
• Investigate the relationship between perpendicular lines and right angles
• Draw perpendicular and parallel lines using a straightedge.
• Perform basic constructions of Euclidean geometry including copying line segments and angles.
• Use parallel lines to divide a segment into equal parts.
• Draw a three-dimensional object using one- and two-point perspective. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| B | Identify triangles, use triangle relationships, and prove two triangles or two polygons are congruent or similar using algebraic and coordinate as well as deductive proofs. | • Classify triangles by their sides and by their angles.
• Identify the sum of the angles of a triangle.
• Identify the relationships between the interior and exterior angles of a triangle.
• Use the triangle Sum Theorem to find missing interior and exterior angle measures of a triangle. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>B continued</td>
<td>Identify triangles, use triangle relationships, and prove two triangles or two polygons are congruent or similar using algebraic and coordinate as well as deductive proofs.</td>
<td>• Use the relationship between the angles and sides of a triangle to solve problems.</td>
<td>• Observation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determine if three line segments can form a triangle.</td>
<td>• Evaluate written work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the Triangle Inequality Theorem to solve problems.</td>
<td>• Performance assessments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prove two triangles are congruent using SSS, SAS, ASA, AAS and corresponding right triangle congruencies.</td>
<td>• Tests, quizzes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Distinguish between altitudes, medians, perpendicular bisectors, and angle bisectors.</td>
<td>• Problem solving journal/activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identify circumcenters, incenters, centroids, and orthocenters.</td>
<td>• Evaluate oral response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Find the scale factor of similar triangles.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prove triangles are similar using corresponding angles.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prove triangles are similar using corresponding sides and angles.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identify similar triangles formed by the hypotenuse of a right triangle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Find the geometric mean of two numbers.</td>
<td></td>
</tr>
<tr>
<td>PA Standards</td>
<td>Course Objectives</td>
<td>Performance Indicators</td>
<td>Assessment Options</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| C | Classify, identify and prove the properties of quadrilaterals involving opposite sides and angles, consecutive sides and angles, and diagonals using deductive proofs. | • Prove lines are parallel using the relationships of angles formed by the intersection of two lines and a transversal.
• Classify quadrilaterals.
• Use the sum of the measures of a quadrilateral’s interior angles to solve problems.
• Use properties of parallelograms to solve problems.
• Prove a quadrilateral is a parallelogram.
• Identify properties of rectangles and use them to solve problems.
• Use the properties of trapezoids to solve problems.
• Use the Midsegment Theorems for Trapezoids to solve problems. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| D | Identify corresponding parts in congruent triangles to solve problems. | • Identify the corresponding parts of congruent triangles.
• Use corresponding parts of congruent triangles (CPCTC) to solve problems. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| E | Classify, identify polygon relationships and solve problems involving polygons (including inscribed and circumscribed polygons). | • Classify polygons by the number of sides.
• Classify polygons as concave or convex, regular or not regular.
• Name and draw the diagonals of a polygon.
• Find the perimeter of a polygon.
• Find the sum of the measures of the interior angles of a convex polygon.
• Find the measure of each interior and exterior angle of a regular polygon.
• Use the sum of the measures of a convex polygon’s exterior angles to solve problems.
• Solve problems involving inscribed and circumscribed polygons.
• Determine if two polygons are similar. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| G | Solve problems using analytic geometry. | • Use the distance Formula to solve problems.
• Use the Midpoint Formula to solve problems.
• Find the terminal point given the initial point and direction of a displacement vector.
• Find the magnitude of a vector.
• Find the sum of two vectors.
• Find the slopes of vectors and lines.
• Graph a line based on information given in a real world situation, and use the line to find additional information.
• Use a line graph to represent a real world situation.
• Write the equation of a line given two points on the line or one point on the line and the slope of the line.
• Write equations of lines that are perpendicular and parallel to a given line.
• Organize corresponding sets of data into a scatter plot and approximate a line of best fit. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| I | Model situations geometrically to formulate and solve problems. | - Model situations geometrically to formulate and solve problems.
- Identify adjacent angles.
- Use the definitions of supplementary and complementary angles to find angle measures and solve problems.
- Apply properties of bisectors to solve problems.
- Apply similar triangles to make indirect measurements.
- Find areas of squares, rectangles, and irregular figures.
- Find areas of parallelograms, triangles, and rhombuses.
- Find areas of trapezoids.
- Find areas of regular polygons.
- Find circumferences and areas of circles.
- Determine the relationship of areas of similar figures.
- Find the surface areas and volumes of prisms and cylinders.
- Find the lateral areas, surface areas and volumes of pyramids.
- Find the lateral areas, surface areas and volumes of cones.
- Determine the relationship of volumes of similar solids.
- Describe the cross sections of solids. | - Observation
- Evaluate written work
- Performance assessments
- Tests, quizzes
- Problem solving journal/activity
- Evaluate oral response |
Strand: 2.10
Standard: Trigonometry
Course: Integrated Mathematics 3

<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| B | Identify, create, and solve practical problems involving triangles (and specifically right triangles using the Pythagorean Theorem) and trigonometric functions. | • Apply properties of isosceles and right triangles to solve problems and write proofs.
• Identify the relationship between the legs and hypotenuse of a right triangle.
• Solve right triangle problems by applying the Pythagorean Theorem.
• Determine if a set of three numbers is a Pythagorean triple.
• Identify the relationships between the lengths of the sides of 45°-45°-90° and 30°-60°-90° triangles.
• Use properties of special right triangles to solve problems.
• Calculate the tangent ratio in a right triangle.
• Use tangents and inverse tangents to solve problems.
• Use the sine ratio in a right triangle.
• Calculate the cosine ratio in a right triangle.
• Use the sines, cosines, and their inverses to solve problems. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
MIFFLIN COUNTY SCHOOL DISTRICT
Integrated Mathematics 3

Strand: 2.11
Standard: Concepts of Calculus
Course: Integrated Mathematics 3

<table>
<thead>
<tr>
<th>PA Standards</th>
<th>Course Objectives</th>
<th>Performance Indicators</th>
<th>Assessment Options</th>
</tr>
</thead>
</table>
| B | Interpret maximum and minimum values in problem situations. | • Interpret maximum and minimum values in problem situations. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
| E | Estimate areas under curves using sequences of areas. | • Estimate an irregular shaped area using a grid of squares or rectangles.
• Estimate the volume of a sphere by counting the number of congruent pyramids that it holds. | • Observation
• Evaluate written work
• Performance assessments
• Tests, quizzes
• Problem solving journal/activity
• Evaluate oral response |
District Recommended Instructional Approaches For the Course
To Drive Teacher’s Instructional Activities

- Whole group instruction
- Small group instruction
- Projects
- Class discussion
- Peer evaluation
- Teacher and peer conferencing
- Oral presentations
- Individual instruction
- Research
- Dramatization
- Role playing
- Independent reading
- Read aloud
- Directed reading-thinking activities
- Modeling process
- Games
- Self-reflection
- Self-evaluation
- Independent study
- Guest speaker
- Guest reading
- Writing activities
- Thematic units
- Notebooks
- Study Guides
- Computer technology
MIFFLIN COUNTY SCHOOL DISTRICT
Integrated Mathematics 3
Suggested Pacing Chart

<table>
<thead>
<tr>
<th>Marking Period</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Marking Period</td>
<td>Chapters 1 (follow order in textbook) and 2 (do 2-1 to 2-4, 2-6, 2-7, then 2-5)</td>
</tr>
<tr>
<td>Second Marking Period</td>
<td>Chapters 3 (3-1 to 3-4, 3-6, then 3-5), 4 (follow order in textbook) and start 6</td>
</tr>
<tr>
<td>Third Marking Period</td>
<td>Chapters 6 (finish), 7 (7-1 to 7-4 only), and 8</td>
</tr>
<tr>
<td>Fourth Marking Period</td>
<td>Chapters 5 and 10</td>
</tr>
</tbody>
</table>

Suggested LABS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Lab 1, Lab 2*</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Lab 2*, Lab 3*</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Lab 1, Lab 2, Lab 3</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Lab 1, Lab 3</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Lab1, Lab 2, or Lab 3</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Lab1, Lab 2</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Lab 2, or Lab 3</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Lab1, Lab 2, or Lab 3</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Lab1**, Lab 2, or Lab 3</td>
</tr>
</tbody>
</table>

* Sketchpad required
** good for near end of year
Laboratory Equipment List for Integrated Math 3

This list is a comprehensive equipment list for every math lab of *CORD Geometry*

<table>
<thead>
<tr>
<th>Equipment Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeblocks (sets)</td>
</tr>
<tr>
<td>Algebra tiles (sets)</td>
</tr>
<tr>
<td>Balance scales, 1 gm resolution (or spring scale)</td>
</tr>
<tr>
<td>Beakers, 100 mL and 400 ml</td>
</tr>
<tr>
<td>Calculators (Graphing???)</td>
</tr>
<tr>
<td>Compass</td>
</tr>
<tr>
<td>Cylindrical Cans-(small juice can, 1-lb coffee can, 3-lb coffee can, soup cans, 5 gal buckets)</td>
</tr>
<tr>
<td>Dice</td>
</tr>
<tr>
<td>Drinking Straws</td>
</tr>
<tr>
<td>Golf tees</td>
</tr>
<tr>
<td>Graduated cylinders (100 mL capacity)</td>
</tr>
<tr>
<td>Graph paper, sheets</td>
</tr>
<tr>
<td>Index cards</td>
</tr>
<tr>
<td>Mass hangers (50-g, 100-g and 200-g slotted masses)</td>
</tr>
<tr>
<td>Measuring tapes</td>
</tr>
<tr>
<td>Measuring tapes, cloth</td>
</tr>
<tr>
<td>Measuring tapes, marked in inches and centimeters</td>
</tr>
<tr>
<td>Meter sticks</td>
</tr>
<tr>
<td>Paper, heavy construction</td>
</tr>
<tr>
<td>Pennies</td>
</tr>
<tr>
<td>Posterboard</td>
</tr>
<tr>
<td>Protractors</td>
</tr>
<tr>
<td>Rulers, in centimeters</td>
</tr>
<tr>
<td>Scissors</td>
</tr>
<tr>
<td>Sewing needle and thread</td>
</tr>
<tr>
<td>Softball</td>
</tr>
<tr>
<td>Spreadsheet programs and software applications</td>
</tr>
<tr>
<td>Spring (with constant between 3 and 10 N/m) and support assembly</td>
</tr>
<tr>
<td>Stopwatches</td>
</tr>
<tr>
<td>Straight edges</td>
</tr>
<tr>
<td>String</td>
</tr>
<tr>
<td>Tape, (cellophane)</td>
</tr>
<tr>
<td>Tape, masking</td>
</tr>
</tbody>
</table>